eosAC

采用 Picarro G2201-*i*,测量 CO₂ 和 CH₄ 同位素土壤通量

简介

为了解土壤气体通量产生的来源和机制,人们常常测量二 氧化碳 (CO₂)和甲烷 (CH₄)的碳稳定同位素。举例来说,CO₂ 的同位素可用来确定植物根部和微生物产生的 CO₂ 对土壤总 CO₂ 通量的贡献。或者,在光合途径已经从碳三 (C3)转变为 碳四 (C4)或过程相反的体系中 (图 1a),可以运用同位素来确 定源自每个途径的碳对土壤总呼吸的相对贡献。同样,甲烷稳 定同位素可用来区分土壤气体通量 (图 1b)的生物来源与地质 来源,还可以用来检验甲烷的产生与氧化机制。本应用文章简 要介绍了 Picarro G2201-*i* 双碳 (CO₂和 CH₄)同位素分析仪的 配置和使用,以便区分瑞典南部过渡农业实验中的 C3 和 C4 呼吸源。

图 1. (a) 在瑞典乌普萨拉市奥尔图纳 (Ultuna) 场地,将 eosAC 腔室 与 Picarro G2201-i 进行耦合(图片: Muhammad Shahbaz, 圣路易 斯大学 (SLU)) (b) 在黄石国家公园雏菊间歇泉附近测量碳同位素 (图片: Moyo Ajayi, 范德堡大学)

系统设置

按照 Eosense 应用文章 AN0003,使用 eosMX 多路复用器和 eosAC 自动土壤通 量腔室快速设置您的 Picarro G2201-*i*。

样品处理

配有 A0702 再循环泵的 Picarro G2201-*i* 的标称流量为 25 标准毫升每分钟 (sccm),并且经过优化,能够实施基于再 循环的测量。由于流量较低,因此用户必须考量腔室测量所需 的总传输时间和混合时间。下表 1 中显示了将样品输送到分 析仪中所需的最短估计时间 (根据管道长度)。

管道长度	容量	传输时间
10 米	79 毫升	3 分钟
20 米	158 毫升	6 分钟
30 米	238 毫升	9分钟

表 1. 将气体输送至 G2201-i 分析仪的标称传输时间, 假设管道内径 为3.175 毫米 (% 英寸) 并且采用 Picarro A0702 再循环泵。

由于所需的最短传输时间较长,因此用户可能希望运行次级泵来加速取样过程。Eosense 建议采用一款专为再循环应用而设计、标称流量小于 1 标准升每分钟 (SLPM, 1000 sccm)的泵。图 2 显示了系统中次极泵的配置。

图 2.

子循环系统的示例 图,采用次级泵来加 速 eosMX 至 G2201-i 分析仪的流量。系统 总流量是 Picarro 泵流 量和次级泵流量的总 和。

eosAC

应用文章

野外场地与系统配置

长期野外实验 ('Ultuna') 位于瑞典乌普萨拉市,这块场地 在制定实验性试验之前已在农业领域 (主要是 C3 作物) 推广运 用了至少 300 年。启动实验性试验的目的是研究各种有机改 良剂 (无论是否施氮肥) 对土壤肥力的影响。自 1956 年至 1999 年间,该场地主要种植春大麦、燕麦、油菜、甜菜、芥 菜和萝卜等 C3 一年生作物。这些 C3 作物的平均 δ¹³C 特征 为 -28.0‰。1999 年的土壤 δ¹³C 特征约为 -26.6‰。2000 年, C3 作物被 C4 青贮玉米所取代,根 δ¹³C 特征为 -12.5‰。由于土壤有机碳含量较低,因此该场地的二氧化碳 通量率普遍较低 (Shahbaz 等人, 2019 年)。

为监测气体通量和同位素组成,现场安装了 Picarro G2201-*i* 以及 12 个与 eosMX 多路复用器相耦合的 eosAC 自动土壤通量腔室。每个腔室都采用四种肥料 (未施肥、硝酸钙、硫酸铵、氰氨化钙)的其中一种进行处理,每次施肥处理都进行三次重复的腔室测量。使用 30 m 的 PTFE 管将腔室与系统进行耦合,系统吹扫与气体传输时间大约为 5 - 6 分钟(并联连接具有大致相同流量的第二台分析仪)。对于该实验,每个腔室闭合的时长共计 15 分钟,以便积聚足量的气体。运用 eosAnalyze-AC 软件以及 CO₂ 和 CH₄ 同位素的 Keeling 图来处理数据,该软件能够生成线性通量估计值和指数通量估计值。

特征通量与同位素数据

下文图 3 显示了来自单个腔室闭合的两个示例浓度曲 线。Picarro G2201-*i* 分析仪的高精度与数据收集的高时间分 辨率意味着,数据的线性拟合和指数拟合都非常稳健。请注 意,对于 Ultuna 野外场地,我们观察到了大气中的 CO₂ 排放 和土壤中的 CH₄ 吸收;该场地具有典型的排水良好的农业土 壤。图 4 显示了运用 eosAnalyze-AC 软件来执行 CO₂ Keeling 图分析的示例。

图 3. *摘自* eosAnalyze-AC 软件的 CO₂ 排放曲线(左)和 CH₄ 吸收曲 *线*(右)示例,

图 4. CO₂ *同位素* Keeling *图显示土壤* CO₂ 通量的估计 δ¹³C 同位素值 为 -21.8‰。

施肥处理的比较

在该分析中,我们重点关注三个重复试验中的其中一个, 该次重复囊括了四个单独的施肥处理类型(未施肥、硝酸钙、 硫酸铵、氰氨化钙)。本文所提供的数据取自 2019 年 5 月下 旬在播种青贮玉米作物之前(裸土)。

所测得的 CO₂ 通量介于 49 - 70 mg CO₂/m²/h 之间,线 性通量估计值平均比指数估计值低约 14% (图 5)。最高通量出 现在未施肥的地块中,而最低通量则出现在硫酸钙处理的地块 中。总通量大小与先前的场地测量值相一致 (Shahbaz 等人, 2019 年)。

图 5. 在五月下旬的两周内,针对四种施肥处理,运用线性拟合和指数 拟合计算得出的中值 CO₂。

所有的场地均显示出一致的甲烷汇,其在硫酸铵和氰氨化 钙施肥处理的地块中最高 (图 6)。Hartmann 等人(2011 年) 实施的其它研究表明,施肥会对甲烷氧化产生瞬态效应,而他 们得出的结论则是水分产生的影响明显更大。鉴于 Ultuna 场 地四个处理地块的土壤质地不同,这也可能是对此处所示结果 的诠释。

图 6. 采用线性通量模型和指数通量模型, 计算得出的每种施肥处理中 值 CH4 吸收。

所有地块的碳同位素值 (δ¹³C) 介于 -22.0‰ 和 -24.1‰ 之 间,如表 2 中所示。运用简单线性同位素混合模式,我们估 计在五月底的休耕期间 C3 总土壤碳呼吸(以 CO₂ 计)将介 于 67 - 82% 之间,最低值出现在氰氨化钙处理的地块中,而 最高值则出现在硫酸铵处理的地块中。由于这一年中没有植被 覆盖,因此我们假设正在被呼出的 C4 碳代表了玉米有机物质 (根、茎和凋落物),这些有机物质自过渡到 C4 作物已经积累 了 20 年。

场地	土壤通量 δ ¹³ C	C3-C %
未施肥	-23.0‰	75%
硝酸钙	-23.0‰	75%
硫酸铵	-24.1‰	82%
氰氨化钙	-22.0‰	67%

表 2. 对于四种施肥处理类型的其中一种,运用 Keeling 图截距估计的 CO₂ 同位素通量值。右栏显示了当 $\delta^{13}C_{C3} = -26.6\%$ (2000 年土壤估 计)和 $\delta^{13}C_{C4} = -12.5\%$ (玉米)时,运用简单线性混合模式计算得出 的 C3 碳 (C3-C) 呼吸估计值。

结论

将 Picarro G2201-*i*、eosMX 多路复用器和 eosAC 自动 腔室系统结合使用,我们可以确定施肥处理中 CO₂和 CH₄ 通 量的差异。我们运用 Keeling 图分析,实时确定了土壤呼吸的 CO₂ 同位素组成。通过对数据运用简单线性混合模式,我们 估计出土壤总呼吸中 C3和 C4碳的比例,以及该比例在施肥 处理地块之间的变化情况。

这些碳同位素测量值将用来确定 Ultuna 土壤经过施肥处 理所产生的老碳(来自 C3 植物)和新碳(C4 植物)的呼吸 损失,这将有助于研究人员了解如何改善农业土壤的长期肥 力。

参考文献

Shahbaz et al. (2019), Science of the Total Environment, 658, 1539-1548.

Hartmann et al. (2011), Plant & Soil, 342, 265-275.

致谢

感谢 Muhammad Shahbaz 博士和 Gunnar Börjesson 博士亲临现场并与我们分享数据。

